# <u>TransIT-X2®</u> Dynamic Delivery System for CRISPR/Cas9 Ribonucleoprotein (RNP) Delivery

Mirus.

Instructions for use with MIR 6000, 6003, 6004, 6005, 6006, 6010

## **SPECIFICATIONS**

| Storage           | Store <i>Trans</i> IT-X2® Dynamic Delivery System tightly capped at -20°C.  **Before each use, warm to room temperature and vortex gently. |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Product Guarantee | 1 year from the date of purchase, when properly stored and handled.                                                                        |

# ▶ CRISPR RIBONUCLEOPROTEIN (RNP) TRANSFECTION PROTOCOL

## Fill in volumes below based on culture vessel used for transfection (Table 1).

#### A. Plate cells

1. Approximately 18-24 hours before transfection, plate cells in \_\_\_ml complete growth medium. Most cell types should be ~80% confluent at the time of transfection.

For adherent cells: Plate cells at a density of  $0.8-3.0 \times 10^5$  cells/ml. For suspension cells: Plate cells at a density of  $2.5-5.0 \times 10^5$  cells/ml.

2. Culture overnight.

# B. Prepare TransIT-X2®:RNP complexes (Immediately before transfection)

- 1. Warm TransIT-X2® to room temperature and vortex gently before using.
- 2. Place μl of OptiMEM® I Reduced-Serum Medium in a sterile tube.
- 3. Add \_\_\_\_µl of a 50 μM guide RNA stock solution (12 nM final concentration per well). Mix gently by pipetting. NOTE: If using 2-part crRNA + tracrRNA, combine at a 1:1 molar ratio and incubate for 10 minutes at room temperature to anneal. Then add to tube containing OptiMEM®.
- Add \_\_\_\_µl of a 30 µM Cas9 protein stock solution (6 nM final concentration per well).
   Mix gently by pipetting.
- 5. Incubate at room temperature for 10 minutes.
- 6. Add ul TransIT-X2® to the RNP mixture. Mix gently by pipetting.
- 7. Incubate at room temperature for 15 minutes.

# C. Distribute complexes to cells

- 1. Add the *Trans*IT-X2®:RNP complexes (prepared in Step B) drop-wise to different areas of the well. Gently rock plate for even distribution of complexes.
- 2. Incubate 24-72 hours.
- 3. Harvest cells and assay as required.

Table 1. Recommended starting conditions

| Culture vessel                                 | 24-well<br>plate    | 12-well<br>plate    | 6-well<br>plate     |
|------------------------------------------------|---------------------|---------------------|---------------------|
| Surface area                                   | 1.9 cm <sup>2</sup> | 3.8 cm <sup>2</sup> | 9.6 cm <sup>2</sup> |
| Complete growth medium                         | 0.5 ml              | 1 ml                | 2.5 ml              |
| Serum-free medium                              | 50 μl               | 100 μΙ              | 250 μΙ              |
| guide RNA (50 μM stock, 12 nM final in well)   | 0.12 μΙ             | 0.24 μΙ             | 0.6 μΙ              |
| Cas9 Protein (30 µM stock, 6 nM final in well) | 0.1 μΙ              | 0.2 μΙ              | 0.5 μΙ              |
| TransIT-X2® Reagent                            | 1 μΙ                | 2 μΙ                | 5 μΙ                |

#### **▶** Transfection Optimization:

The 2:1 ratio of guide RNA to Cas9 protein (12 nM gRNA:6 nM Cas9; final concentration per well) used in this protocol is a starting point for RNP transfection. Further ratio optimization may be required for some cell types.

For more on transfection optimization, see the TransIT-X2® <u>full protocol (PDF)</u> or <u>Tips</u> <u>from the Bench</u>.



Reagent Agent \*is an online tool designed to help determine the best solution for nucleic acid delivery based on in-house data, customer feedback and citations.

Learn more at: mirusbio.com/ra

©1996-2024 All rights reserved. Mirus Bio LLC. All trademarks are the property of their respective owners.

For terms and conditions, visit www.mirusbio.com @1996-2017. All rights reserved Mirus Bio LLC. For terms and conditions, visit www.mirusbio.com.

Rev.A 051817