Quick Reference Protocol for Lentivirus Generation

Instructions for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6700

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-VirusGEN® Transfection Reagent tightly capped at -20°C. **Before each use, warm to room temperature and vortex gently.**			
Product Guarantee	1 year from the date of purchase, when properly stored and handled.			

▶ PROTOCOL FOR <u>LENTIVIRUS</u> GENERATION IN ADHERENT HEK 293 CELL CULTURES

Full protocol and additional documentation available at *mirusbio.com/6700*

Fill in volumes below based on culture vessel used for transfection (Table 1).

A. Plate cells approximately 18-24 hours prior to transfection

- 1. Plate cells in ___ml complete growth medium (per well or flask). Plate cells at a density of $4.0 5.0 \times 10^5$ cells/ml
- 2. Culture overnight. Cells should be 80-95% confluent on day of transfection. Transfecting cells at a lower confluency may lead to high cellular toxicity and lower virus titers.

B. Prepare TransIT-VirusGEN®:DNA complexes (immediately before transfection)

- 1. Warm TransIT-VirusGEN® Transfection Reagent to room temperature and vortex gently.
- 2. Place ____ul of PBS (e.g. Millipore Sigma Cat. No. D8537) or serum-free media in a sterile tube.
- 3. Add ul of the total plasmid DNA to the tube. Mix completely.
- 4. Add ____µl of TransIT-VirusGEN® to the DNA mixture. Mix by pipetting, vortexing or inversion.
- 5. Incubate at room temperature for 15-30 minutes to allow transfection complexes to form. Do <u>not</u> vigorously agitate complexes again once formed.

C. Distribute complexes to cells

- 1. Add TransIT-VirusGEN®: DNA complexes drop-wise to different areas of the well.
- 2. Gently rock plate or vessel for even distribution of complexes.
- 3. Incubate 48 hours prior to lentivirus harvest. NOTE: It is not necessary to replace complete growth medium with fresh medium post-transfection.

D. Virus harvest and storage

- 1. Harvest cell supernatant containing recombinant lentivirus particles.
- 2. Filter virus-containing supernatant through a 0.45 µm PVDF filter to remove any cells.
- 3. Immediately flash freeze aliquots in cryogenic tubes and store at -80°C.

Table 1. Recommended starting conditions

Culture vessel	6-well plate	10-cm dish	T75 flask
Surface area	9.6 cm ²	59 cm ²	75 cm ²
Complete growth medium	2.0 ml	10 ml	15 ml
PBS or serum-free medium	200 μΙ	1.0 ml	1.5 ml
Total Plasmid DNA (1 μg/μl)	2 μΙ	10 μΙ	15 µl
TransIT-VirusGEN® Reagent	6 µl	30 μΙ	45 μl

Total Plasmid DNA refers to the combined mass of packaging plasmids and the transfer plasmid containing the gene-of-interest. Premix the plasmids together prior to adding to the complex formation medium.

▶ Transfection Optimization

The amount of *Trans*IT-VirusGEN® required for transfection is dictated by the amount of DNA. Determine the best *Trans*IT-VirusGEN® Reagent:DNA ratio for each cell type. Start with 3 µl of *Trans*IT-VirusGEN® per 1 µg of DNA. Vary the concentration of *Trans*IT-VirusGEN® from 2-4 µl per 1 µg of DNA to find the optimal ratio.

For additional transfection optimization tips, see the TransIT-VirusGEN® full protocol.

Quick Reference Protocol for Lentivirus Generation

Instructions for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6700

▶ PROTOCOL FOR <u>LENTIVIRUS</u> GENERATION IN SUSPENSION HEK 293 CELL CULTURES

Full protocol and additional documentation available at mirusbio.com/6700

Fill in volumes below based on total culture volume (Table 2).

A. Maintenance of cells

- 1. Passage suspension HEK 293 cells 18-24 hours prior to transfection to ensure that cells are actively dividing at the time of transfection and to obtain a density of $2 3 \times 10^6$ cells/ml the next day. DO NOT proceed with transfection if cells are not doubling every 24 hours or are < 95% viable by trypan blue exclusion.
- 2. Incubate cells overnight at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).

B. Prepare TransIT-VirusGEN® Reagent: DNA complexes

- 1. Seed cells at a density of $2 3 \times 10^6$ cells/ml immediately prior to transfection. DO NOT proceed with transfections if cells are not doubling normally or are not at high viability.
- 2. Warm TransIT-VirusGEN® Transfection Reagent to room temperature and vortex gently.
- 3. Place ___ml of PBS (e.g. Millipore Sigma Cat. No. D8537) or serum-free media in a sterile tube.
- 4. Add ___μl of the total plasmid DNA to the tube. Mix completely.
- 5. Add ___ul of TransIT-VirusGEN® Reagent to the DNA. Mix by pipetting, vortexing or inversion.
- 6. Incubate at room temperature for 15-30 minutes to allow transfection complexes to form. Do <u>not</u> vigorously agitate complexes again once formed.

C. Distribute complexes to cells in complete growth medium

- 1. Add TransIT-VirusGEN® Reagent:DNA complexes to cultured cells (prepared in Step B).
- 2. Shake cultures on an orbital shaker (e.g. 125 rpm when using a shaker with a 1.9 cm orbital throw) at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).
- 3. Incubate transfected cultures for 48 hours prior to lentivirus harvest.

D. Virus harvest and storage

- 1. Following the 48-hour incubation, centrifuge cells in a sterile tube at $300 \times g$ for 5 minutes. DO NOT dispose of the supernatant following centrifugation.
- 2. Transfer the virus containing supernatant into a new sterile tube.
- 3. Filter through a 0.45 µm PVDF filter (e.g. Millipore Steriflip-HV) to remove any cell debris.
- 4. Immediately flash-freeze aliquots of lentivirus in cryo-tubes and store at -80°C.

Table 2. Volume scaling worksheet for lentivirus generation using TransIT-VirusGEN® Reagent

Starting conditions per milliliter of complete growth medium (Lentivirus Generation)						
	Per 1 ml		Total culture volume		Reagent quantities	
PBS or serum-free medium	0.1 ml	×	ml	=	ml	
Total Plasmid DNA (1 μg/μl)	1 μΙ	×	ml	=	μΙ	
TransIT-VirusGEN® Reagent	3 μΙ	×	ml	=	μΙ	

Total Plasmid DNA refers to the combined mass of packaging plasmids and the transfer plasmid containing the gene-of-interest. Premix the plasmids together prior to adding to the complex formation medium.

Quick Reference Protocol for AAV Generation

Instructions for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6700

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-VirusGEN® Transfection Reagent tightly capped at -20°C. Before each use , warm to room temperature and vortex gently.
Product Guarantee	1 year from the date of purchase, when properly stored and handled.

▶ PROTOCOL FOR <u>ADENO-ASSOCIATED VIRUS (AAV)</u> GENERATION IN ADHERENT HEK 293 CELL CULTURES

Full protocol and additional documentation available at mirusbio.com/6700

Fill in volumes below based on culture vessel used for transfection (Table 3).

A. Plate cells approximately 18-24 hours prior to transfection

- 1. Plate cells in ___ml complete growth medium to a density of $4.0 5.0 \times 10^5$ cells/ml.
- Culture overnight. Cells should be 80-95% confluent on day of transfection. Transfecting cells at a lower confluency may lead to high cellular toxicity and lower virus titers.

B. Prepare TransIT-VirusGEN®:DNA complexes (immediately before transfection)

- 1. Warm TransIT-VirusGEN® Transfection Reagent to room temperature and vortex gently.
- 2. Place µl of PBS (e.g. Millipore Sigma Cat. No. D8537) or serum-free media in a sterile tube.
- 3. In a separate tube, combine all AAV plasmids per the manufacturer recommendations to a final concentration of 1 μ g/ μ l. Mix thoroughly.
- 4. Transfer ___μl of total plasmid DNA to the tube containing PBS. Mix completely.
- 5. Add ____ul of *Trans*IT-VirusGEN® to the DNA mixture. Mix by pipetting, vortexing or inversion.
- Incubate at room temperature for 15-30 minutes to allow transfection complexes to form. Do <u>not</u> vigorously agitate complexes again once formed.

C. Distribute complexes to cells

- 1. Add TransIT-VirusGEN® Reagent: DNA complexes drop-wise to different areas of the well.
- 2. Gently rock plate or vessel for even distribution of complexes.
- 3. Incubate at 37°C in 5% CO₂ for 48-72 hours prior to AAV harvest.

D. Virus harvest and storage

- 1. Following the 48-72 hour incubation, prepare 10X Cell Lysis Buffer (500 mM Tris pH 8, 10% Tween® 20, 20 mM MgCl₂).
- 2. Add 0.1X volume (___ml) of 10X Cell Lysis Buffer and 100 U/ml (___μl) of Benzonase® to each well or flask. Incubate at 37°C for 1.5 hours with shaking.
- 3. Add 0.1X volume (___ml) of 5 M NaCl. Mix completely and incubate at 37°C for 30 minutes with shaking.
- 4. Centrifuge the mixture at 4,100 × g for 10 minutes to remove cell debris.
- 5. Transfer the AAV-containing supernatant to a new tube. Store at -80°C.

Table 3. Recommended starting conditions

Culture vessel	6-well plate	10-cm dish	T75 flask
Surface area	9.6 cm ²	59 cm ²	75 cm ²
Complete growth medium	2.0 ml	10 ml	15 ml
PBS or serum-free medium	200 μΙ	1.0 ml	1.5 ml
Total Plasmid DNA (1 μg/μl)	3 μΙ	15 μl	22.5 μΙ
TransIT-VirusGEN® Reagent	6 μΙ	30 μΙ	45 μl

Total Plasmid DNA refers to the combined mass of packaging plasmids and the transfer plasmid containing the gene-of-interest. Premix the plasmids together prior to adding to the complex formation medium.

▶ Transfection Optimization

Determine the best *Trans*IT-VirusGEN® Reagent:DNA ratio for each cell type. Start with 2 µl of *Trans*IT-VirusGEN® per 1 µg of DNA. Vary the concentration of *Trans*IT-VirusGEN® from 1-4 µl per 1-2 µg of DNA to find the optimal ratio.

For additional transfection optimization tips, see the TransIT-VirusGEN® <u>full protocol</u>.

Quick Reference Protocol for AAV Generation

Instructions for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6700

▶ PROTOCOL FOR <u>ADENO-ASSOCIATED VIRUS (AAV)</u> GENERATION IN <u>SUSPENSION</u> HEK 293 CELL CULTURES

Fill in volumes below based on total culture volume (Table 4).

A. Maintenance of cells

- 1. Passage suspension HEK 293 cells 18-24 hours prior to transfection to ensure that cells are actively dividing at the time of transfection and to obtain a density of $2 3 \times 10^6$ cells/ml the next day.
- 2. Incubate cells overnight at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).

B. Prepare TransIT-VirusGEN® Reagent:DNA complexes

- 1. Seed cells at a density of $2 3 \times 10^6$ cells/ml immediately prior to transfection. DO NOT proceed with transfections if cells are not doubling normally or are not at high viability.
- 2. Warm TransIT-VirusGEN® Transfection Reagent to room temperature and vortex gently.
- 3. Place ___ml of PBS (e.g. Millipore Sigma Cat. No. D8537) or serum-free media in a sterile tube.
- 4. In a separate tube, combine all AAV plasmids per the manufacturer recommendations to a final concentration of 1 μ g/ μ l. Mix thoroughly.
- 5. Transfer µl of total plasmid DNA to the tube containing PBS. Mix completely.
- 6. Add ___ul of TransIT-VirusGEN® Reagent to the DNA. Mix by pipetting, vortexing or inversion.
- 7. Incubate at room temperature for 15-30 minutes to allow transfection complexes to form. Do <u>not</u> vigorously agitate complexes again once formed.

C. Distribute complexes to cells in complete growth medium

- 1. Add TransIT-VirusGEN® Reagent: DNA complexes to cultured cells (prepared in Step B).
- 2. Shake cultures on an orbital shaker (e.g. 125 rpm when using a shaker with a 1.9 cm orbital throw) at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).
- 3. Incubate transfected cultures for 48-72 hours prior to AAV harvest.

D. Virus harvest and storage

- Following the 48-72 hour incubation, prepare 10X Cell Lysis Buffer (500 mM Tris pH 8, 10% Tween® 20, 20 mM MgCl₂).
- 2. Transfer the total volume of cell suspension (___ml) to a sterile conical tube or appropriate vessel.
- 3. Add 0.1X volume (__ml) of 10X Cell Lysis Buffer and 100 U/ml (___µl) of Benzonase®. Mix completely and incubate at 37°C for 1.5 hours with shaking.
- Add 0.1X volume (___ml) of 5 M NaCl. Mix completely and incubate at 37°C for 30 minutes with shaking.
- 5. Centrifuge the mixture at 4,100 × g for 10 minutes to remove cell debris.
- 6. Transfer the AAV-containing supernatant to a new tube. Store at -80°C.

Table 4. Volume scaling worksheet for AAV generation using TransIT-VirusGEN® Reagent

Starting conditions per milliliter of complete growth medium (AAV Generation)					
	Per 1 ml		Total culture volume		Reagent quantities
PBS or serum-free medium	0.1 ml	×	ml	=	ml
Total Plasmid DNA (1 μg/μl)	2 μΙ	×	ml	=	μΙ
TransIT-VirusGEN® Reagent	3 μΙ	×	ml	=	μΙ

Total Plasmid DNA refers to the combined mass of packaging plasmids and the transfer plasmid containing the gene-of-interest. Premix the plasmids together prior to adding to the complex formation medium.

©1996-2025 All rights reserved. Mirus Bio LLC. All trademarks are the property of their respective owners. For terms and conditions, visit www.mirusbio.com

Rev2 061423