

Quick Reference Protocol, SDS and Certificate of Analysis available at mirusbio.com/6700

Lentivirus is an enveloped, single-stranded RNA virus from the *Retroviridae* family capable of infecting both dividing and non-dividing cells. Combined with an efficient host-genome integration mechanism and the ability to pseudotype the virus, this capability makes recombinant lentivirus a central gene delivery tool for robust and stable transgene expression in target cells.

Adeno-associated virus (AAV) is a nonenveloped, single stranded DNA virus from the *Parvoviridae* family notable for its lack of pathogenicity, low immunogenicity and ability to infect both dividing and quiescent cells. Because AAV is replication-defective in the absence of adeno or helper proteins and is not implicated in any known human diseases, it is widely considered a safe gene delivery vehicle for *in vivo* and *in vitro* applications. Accordingly, recombinant AAV has become an invaluable tool for gene therapy and the creation of isogenic human disease models.

The *Trans*IT-VirusGEN® Transfection Reagent enables the generation of both high titer lentivirus and AAV in adherent and suspension HEK 293 cell types. With salient features including: high efficiency DNA delivery, culture format versatility and streamlined virus generation workflows, *Trans*IT-VirusGEN® Transfection Reagent is ideal for scientists utilizing a variety of virus platforms to accelerate their research.

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-VirusGEN® Transfection Reagent tightly capped at -20°C. <i>Before each use</i> , warm to room temperature and vortex gently.
Product Guarantee	1 year from date of purchase, when properly stored and handled.

Warm *Trans*IT-VirusGEN[®] to room temperature and vortex gently before each use.

MATERIALS

Materials Supplied

TransIT-VirusGEN® Transfection Reagent is supplied in the following formats.

Product No.	Quantity
MIR 6703	1 × 0.3 ml
MIR 6704	1 × 0.75 ml
MIR 6700	1 × 1.5 ml
MIR 6705	5 × 1.5 ml
MIR 6706	10 × 1.5 ml
MIR 6720	1 × 30 ml
MIR 6740	1 × 150 ml

For Materials Required but Not Supplied, See Protocol Sections:

- (I) Lentivirus Generation in Adherent HEK 293 Cell Cultures
- (II) Lentivirus Generation in Suspension HEK 293 Cell Cultures
- (III) Lentivirus Transduction and Titering Protocol Using GFP Reporter Virus
- (IV) AAV Generation in Adherent HEK 293 Cell Cultures
- (V) AAV Generation in Suspension HEK 293 Cell Cultures
- (VI) AAV Transduction/Titering Method Using a GFP Reporter Virus

For Research Use Only

BEFORE YOU START:

Important Tips for Optimal AAV or Lentivirus Production

The suggestions below yield high efficiency plasmid DNA transfection using the *Trans*IT-VirusGEN® Transfection Reagent.

- Cell density (% confluence) at transfection. The recommended cell density for adherent HEK 293 cells is 80-95% confluence at the time of transfection. The recommended cell density for suspension HEK 293 cells is 2 3 × 10⁶ cells/ml at the time of transfection. Passage cells 18-24 hours before transfection to ensure that cells are actively dividing and reach the appropriate density at time of transfection.
- **DNA purity.** Use highly purified, sterile, endotoxin-free and contaminant-free DNA for transfection. Plasmid DNA preparations that have an A_{260/280} absorbance ratio of 1.8-2.0 are desirable. DNA prepared using miniprep kits is not recommended as it might contain high levels of endotoxin. We recommend using MiraCLEAN® Endotoxin Removal Kit (MIR 5900) to remove endotoxin from your DNA preparation.
- Packaging and transfer plasmids. The optimal ratio between plasmids will depend on the vector backbone and gene-of-interest. For each unique construct, empirically determine and use the optimal ratio for best results. Use plasmid manufacturer recommendations or previously established ratios as a starting point.
- Ratio of *Trans*IT-VirusGEN® to DNA. Determine the optimal *Trans*IT-VirusGEN® Reagent:DNA ratio for each cell type by varying the amount of reagent from 2-4 µl (lentivirus) or 1-3 µl (AAV) per 1 µg total DNA. Refer to **Tables 1-4** in the Lentivirus and AAV sections for recommended starting conditions based on cell culture vessel size.
- Complex formation conditions. Prepare *Trans*IT-VirusGEN® Reagent:DNA complexes in Dulbecco's Phosphate Buffered Saline (DPBS) without calcium or magnesium (Millipore Sigma Cat. No. D8537). Alternatively, a serum-free growth medium such as Opti-MEM® I Reduced-Serum Medium (Gibco Cat. No. 31985-070) can also be used. Form complexes in a volume that is 5-10% of the total culture volume. For each unique vector construct, we recommend evaluating complex formation times between five minutes and one hour to identify an optimal time for maximal viral titer and quality. As a starting point, we recommend a complex formation time of 15-30 minutes. If forming complexes in a volume that is less than 5-10% of the total culture volume, complex formation time may need adjustments.
- Cell culture conditions. Culture cells in the appropriate medium, with or without serum (e.g. DMEM + 10% FBS + 10 mM HEPES pH 7.4 for adherent HEK 293 cultures; BalanCD HEK293 for suspension HEK 293 cultures). After transfection, there is no need to perform a medium change to remove the transfection complexes.
- Presence of antibiotics. Antibiotics inhibit transfection complex formation and should be excluded from the complex formation step. Transfection complexes can be added directly to cells growing in complete culture medium containing serum and low levels of antibiotics (0.1-1X final concentration of penicillin/streptomycin mixture).
- **Media change post-transfection.** A media change is not required and could be detrimental to virus titers; therefore, we do not recommend a media change post-transfection.
- **Post-transfection incubation time for lentivirus.** The optimal incubation time for harvesting high titer lentivirus is 48 hours. Minimal amounts of functional lentivirus are produced during the period of 48-72 hours post-transfection.
- **Post-transfection incubation time for AAV.** The optimal incubation time for harvesting high titer AAV is generally 48-72 hours post-transfection.

Premix packaging and transfer plasmids together prior to adding to the complex formation medium.

Do not use serum or antibiotics in the media during transfection complex formation.

Transfection complexes can be added directly to cells cultured in growth media +/- serum and up to 0.1-1X antibiotics.

SECTION I: Lentivirus Generation in Adherent HEK 293 Cell Cultures

The following procedure describes plasmid DNA transfections for lentivirus generation in adherent HEK 293 cell types in a <u>6-well plate format</u>. The surface areas of other culture vessels are different, and transfections must be scaled accordingly. Appropriately increase or decrease the amounts of serum-free medium, *Trans*IT-VirusGEN® Reagent, total plasmid DNA and complete culture medium based on the size of the cell culture vessel (refer to **Table 1** below).

Table 1. Recommended TransIT-VirusGEN® starting conditions for LV production

Culture vessel	48-well plate	24-well plate	12-well plate	6-well plate	10-cm dish	T75 flask
Surface area	1.0 cm^2	1.9 cm ²	3.8 cm^2	9.6 cm ²	59 cm ²	75 cm ²
Complete growth medium	263 μl	0.5 ml	1.0 ml	2.0 ml	10 ml	15 ml
PBS or serum-free medium	26 μ1	50 μl	100 μl	200 μl	1.0 ml	1.5 ml
Total Plasmid DNA (1 µg/µl stock)	0.26 μl	0.5 μl	1 μ1	2 μl	10 μ1	15 μl
TransIT-VirusGEN® Reagent	0.78 μl	1.5 μl	3 μl	6 µl	30 µl	45 µl

NOTE: Total Plasmid DNA refers to the combined weight of transfer and packaging plasmids (in μ g) per transfection.

Materials Required but Not Supplied

- HEK 293 cells (e.g. HEK 293T/17 cells, ATCC Cat. No. CRL-11268)
- Complete culture medium (e.g. DMEM + 10% FBS + 10 mM HEPES pH 7.4)
- Plasmid DNA (e.g. pALD-Lenti System, Aldevron Cat. No. pALD-Lenti/VSV-G/GagPol/Rev)
- Phosphate Buffered Saline (PBS) (e.g. MilliporeSigma Cat. No. D8537) or serum-free medium (e.g. Opti-MEM® I Reduced-Serum Medium) for complex formation
- 0.45 µm PVDF filter (e.g. Millipore Cat. No. SE1M003M00 or SLHV033RS)
- · Reporter assay as required

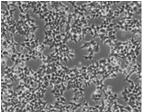
Transient Plasmid Transfection Protocol per Well of a 6-Well Plate

A. Plate cells

- Approximately 18-24 hours before transfection, plate cells in 2 ml of complete growth medium per well in a 6-well plate. A starting cell density of 4 - 5 × 10⁵ cells/ml is recommended. Cultures should be 80-95% confluent at the time of transfection (see representative image at right).
- 2. Incubate cell cultures at 37°C in 5% CO₂ overnight.

B. Prepare TransIT-VirusGEN®: DNA complexes (immediately before transfection)

- 1. Warm *Trans*IT-VirusGEN® Reagent to room temperature and vortex gently before using.
- 2. Place 200 μl of PBS or serum-free medium (e.g. Opti-MEM®) in a sterile tube.
- 3. In a separate sterile tube, combine the packaging plasmid premix (or individual plasmids) and transfer plasmid encoding the gene-of-interest. Mix thoroughly.
- 4. Transfer 2 μg of the total plasmid DNA prepared in Step B.3 to the tube containing PBS. Mix completely.
- 5. Add 6 μ l of *Trans*IT-VirusGEN® Reagent to the diluted DNA mixture. Mix completely by gentle pipetting, inversion or vortexing. Do NOT agitate Reagent:DNA complexes again after this initial mixing.
 - NOTE: This is a 3:1 mixture of transfection reagent to total DNA (vol:wt), which can be further optimized for lentivirus production using *Trans*IT-VirusGEN® Reagent.


Surface areas are based on Greiner tissue culture plates, Falcon 10-cm dishes and T75 flasks. Volumes are per well (or dish) for a given culture vessel.

If small volumes of *Trans*IT-VirusGEN® need to be pipetted, dilute the reagent in serum-free medium before each use to avoid pipetting errors. *Do not* store diluted *Trans*IT-VirusGEN®.

Passage cultured cells 18-24 hours before transfection to ensure active cell division at the time of transfection.

Representative image of ~80% confluent HEK 293T/17 cells:

Do NOT allow the *Trans*IT-VirusGEN® Reagent to incubate alone in complex formation solution > 5 min, i.e. if the reagent is pre-diluted, add DNA within 5 min for optimal complex formation.

Do NOT agitate Reagent:DNA complexes after the initial mixing.

Page 3 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

6. Incubate the mixture at room temperature for 15-30 minutes stationary.

NOTE: The ideal complex formation time may depend on the vector production platform but is typically between 5-60 minutes.

C. Distribute the complexes to cells in complete growth medium

- 1. Add the *Trans*IT-VirusGEN® Reagent:DNA complexes (prepared in Step B) drop-wise to different areas of the wells.
- 2. Gently rock the culture vessel back-and-forth and from side-to-side to evenly distribute the *Trans*IT-VirusGEN® Reagent:DNA complexes.
- Incubate at 37°C in 5% CO₂ for 48 hours.
 NOTE: It is not necessary to replace the complete growth medium with fresh medium post-transfection.

D. Harvest and storage of lentivirus

- Harvest cell supernatant containing recombinant lentivirus particles.
 NOTE: If cells detach during harvest, centrifuge cells at 300 × g for 5 minutes and retain the virus-containing supernatant.
- 2. Filter virus-containing supernatant through a 0.45 μm PVDF filter to remove any cells.
- 3. Immediately flash freeze aliquots of lentivirus in cryogenic tubes and store at -80°C.

SECTION II: Lentivirus Generation in Suspension HEK 293 Cell Cultures

The following procedure describes plasmid DNA transfections for lentivirus generation in 125 ml Erlenmeyer shake flasks using 25 ml of complete growth medium. If using alternate cell culture vessels, increase or decrease the amounts of serum-free complex medium, *Trans*IT-VirusGEN® Reagent and total DNA based on the **volume of complete growth medium** to be used. To calculate the required reagent quantities based on the recommended starting conditions and total culture volume, refer to the calculation worksheet in **Table 2** (below).

Table 2. Scaling worksheet for TransIT-VirusGEN® Reagent for LV transfections

Starting conditions per milliliter of complete growth medium (Lentivirus Generation)						
	Per 1 ml		Total culture		I	Reagent quantities
				volume		
PBS or serum-free medium	0.1	ml	×	ml	=	ml
Total Plasmid DNA (1 μg/μl stock)	1	μl	×	ml	=	μ1
TransIT-VirusGEN® Reagent	3	μl	×	ml	=	µl

NOTE: Total Plasmid DNA refers to the combined weight of transfer and packaging plasmids (in μ g) per transfection.

Materials Required but Not Supplied

- Suspension HEK 293 Cells (e.g. Viral Production Cells, Gibco Cat. No. A35347)
- Complete Culture Medium (e.g. LV-MAX[™] Production Medium (Gibco Cat. No. A3583401) or BalanCD HEK293 (Irvine Scientific Cat. No. 91165))
- Plasmid DNA (e.g. pALD-Lenti System, Aldevron Cat. No. pALD-Lenti/VSV-G/GagPol/Rev)
- Phosphate Buffered Saline (PBS) (e.g. Millipore Sigma, Cat. No. D8537) or serum-free medium (e.g. Opti-MEM® I Reduced-Serum Medium) for complex formation
- Erlenmeyer shake flasks (e.g. Corning® Cat. No. 431143 or Thomson Cat. No. 931110)
- 0.45 µm PVDF filter (e.g. Millipore Cat. No. SE1M003M00 or SLHV033RS)
- Reporter assay as required

There is no need to change culture medium after transfection

Transfection complexes, visualized as small particles, are sometimes observed following transfection. The complexes are not toxic to cells and do not affect transfection efficiency or transgene expression.

We recommend premixing the packaging and transfer plasmids. For each unique construct, empirically determine and use the optimal ratio between plasmids for best results. Use plasmid manufacturer recommendations or previously established ratios as a starting point.

Page 4 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

Transient Plasmid Transfection Protocol per 25 ml HEK 293 Culture

A. Maintenance of cells

1. Passage suspension HEK 293 cells 18-24 hours prior to transfection to ensure that cells are actively dividing at the time of transfection and to obtain a density of $2 - 4 \times 10^6$ cells/ml the next day.

NOTE: Perform cell counts and evaluate viability daily to ensure that cells are doubling every 24 hours and \geq 95% viable by trypan blue exclusion. DO NOT proceed with transfection if cells are not doubling normally or are < 95% viable.

2. Incubate cells overnight at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).

B. Prepare *TransIT-VirusGEN®*:DNA complexes (immediately before transfection)

- 1. Immediately prior to transfection, seed cells at a density of $2 3 \times 10^6$ cells/ml into a transfection culture vessel (e.g. 25 ml per 125 ml Erlenmeyer shake flask).
- 2. Warm *Trans*IT-VirusGEN® Reagent to room temperature and vortex gently.
- 3. Place 2.5 ml of PBS or serum-free medium (e.g. Opti-MEM®) in a sterile tube.
- 4. In a separate sterile tube, combine the packaging plasmid premix (or individual plasmids) and transfer plasmid encoding the gene-of-interest. Mix thoroughly.
- 5. Add 25 μg of total plasmid DNA (i.e. combined transfer and packaging plasmids prepared in Step B.4) to the tube containing PBS. Mix completely.
- 6. Add 75 μl of *Trans*IT-VirusGEN® Reagent to the diluted DNA. Mix completely by gentle pipetting, inversion or vortexing. Do NOT agitate Reagent:DNA complexes again after this initial mixing.

NOTE: This is a 3:1 mixture of transfection reagent to total DNA (vol:wt), which can be further optimized for lentivirus production using *Trans*IT-VirusGEN® Reagent.

7. Incubate the mixture at room temperature for 15-30 minutes stationary. NOTE: The ideal complex formation time may depend on the vector production platform but is typically between 5-60 minutes.

C. Distribute the complexes to cells in complete growth medium

- 1. Add the *Trans*IT-VirusGEN® Reagent:DNA complexes (prepared in Step B) to the flask containing cells.
- 2. Shake flasks on an orbital shaker (125 rpm when using a shaker with a 1.9 cm orbital throw) at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂).
- 3. Incubate cultures for 48 hours prior to lentivirus harvest.

D. Harvest and storage of lentivirus

- 1. Following the 48-hour incubation, centrifuge the lentivirus containing culture(s) in sterile conical tube(s) at 300 × g for 5 minutes. DO NOT dispose of supernatant following centrifugation.
- 2. Collect the virus-containing supernatant using a serological pipet into a sterile conical tube.
 - NOTE: If a large batch of the same virus is produced, the supernatants can be combined.
- 3. Filter virus-containing supernatant through a 0.45 μm PVDF filter (e.g. Millipore Steriflip-HV, Cat. No. SE1M003M00) to remove any cells.
- 4. Immediately flash-freeze aliquots of lentivirus in cryogenic tubes and store at -80°C.

Passage cultured cells 18-24 hours before transfection to ensure that cells are actively dividing at the time of transfection.

Do NOT allow the *Trans*IT-VirusGEN® Reagent to incubate alone in complex formation solution > 5 min, i.e. if the reagent is pre-diluted, add DNA within 5 min for optimal complex formation.

Do NOT agitate Reagent:DNA complexes after the initial mixing.

There is no need to change culture medium after transfection, unless required by your cell type or culture conditions.

SECTION III: Lentivirus Transduction and Titering Protocol Using GFP Reporter Virus

The following procedure describes transduction of HEK 293T/17 cells grown in a <u>24-well format</u> with a GFP reporter lentivirus to determine functional lentivirus titers. The number of wells needed for this assay will depend on the number of lentivirus stocks titered and the number of dilutions required for testing per stock (see step B.5). Testing several dilutions is recommended to accurately determine the functional lentivirus titer.

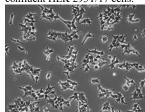
Materials Required, but Not Supplied

- HEK 293T/17 cells (ATCC Cat. No. CRL-11268)
- Appropriate cell culture medium (e.g. DMEM + 10% FBS + 10 mM HEPES pH 7.4)
- Lentivirus stock(s) expressing GFP reporter
- *Transduce*IT™ Reagent (10 mg/ml, Mirus Cat. No. MIR 6620) or hexadimethrine bromide (Sigma Cat. No. H9268)
- 24-well tissue culture plate(s)
- 1X PBS and trypsin
- Flow cytometer equipped with a GFP compatible laser

A. Plate cells

- 1. Approximately 18-24 hours before transduction, plate HEK 293T/17 cells in 0.5 ml complete growth medium per well in a 24-well plate. A starting cell density of 2.0×10^5 cells/ml is recommended. Cultures should be $\geq 40\%$ confluent at the time of transduction (see image at right).
 - NOTE: Plate at least two extra wells to trypsinize and count on the day of transduction. An accurate cell count at the time of transduction is critical to determine an accurate functional titer (see B.1).
- 2. Incubate cell cultures at 37°C in 5% CO₂ overnight.

B. Transduce with GFP-encoding recombinant lentivirus


- 1. Trypsinize and count 2 wells of untransduced cells (plated in A.1) to obtain an accurate cell concentration at the time of transduction.
- 2. Dilute *Transduce*ITTM Reagent or hexadimethrine bromide to a working concentration of 16 μg/ml in pre-warmed complete growth medium (e.g. add 16 μl of a 10 mg/ml solution into 10 ml of growth medium).
- 3. Gently remove half of the medium from each well using a P1000 micropipettor.
- 4. Immediately add 250 µl of the *Transduce*ITTM or hexadimethrine bromide working solution to each well. The final concentration should be 8 µg/ml per well. NOTE: If transducing cell types other than HEK 293T/17, the optimal concentration of *Transduce*IT[™] or hexadimethrine bromide should be empirically determined.
- 5. Add dilutions of the lentivirus stock to separate wells. Testing several dilutions is recommended to accurately determine functional titer. Guidelines are as follows:
 - For titers expected to be $< 5.0 \times 10^7$ TU/ml, add 1 μ l, 3 μ l and 5 μ l of the lentiviral stock to separate wells.
 - For titers expected to be $\geq 5.0 \times 10^7$ TU/ml, dilute the virus stock 10-fold in complete growth media. Add 1 μ l, 3 μ l and 5 μ l of the diluted lentivirus stock to separate wells.

NOTE: To obtain an accurate titer, it is desirable to have less than 20% GFP positive cells at 72 hours post-transduction. This minimizes counting cells with multiple integration events, which would result in an underestimation of titers.

Passage cultured cells 18-24 hours before transduction to ensure active cell division at the time of transduction.

Representative image of $\geq 40\%$ confluent HEK 293T/17 cells:

Page 6 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

6. Incubate the remaining assay wells at 37°C in 5% CO₂ for 72 hours post-transduction.

C. Cell harvest and analysis

- 1. Gently wash cells with 1X PBS and immediately add 100 μl of trypsin to each well.
- 2. Incubate the plate at 37°C and closely monitor cell rounding and detachment.
- 3. After cells have rounded, add 400 µl of complete growth media to each well to inactivate the trypsin and resuspend the cells.
- 4. Transfer 100 μl of cell suspension from each well to separate wells in a non-treated 96-well plate (or similar culture vessel) that is compatible with your flow cytometer.
- 5. Add $150 \mu l$ of complete growth medium to each well to dilute the cells. This is required to obtain accurate flow cytometry results.
 - NOTE: The optimal volume added for dilution may vary depending on the flow cytometer.
- 6. Analyze for GFP expression by flow cytometry.
- 7. Calculate the functional titer of the lentivirus stock using the following equation:

Titer (Transducing units/ml) =
\[\frac{\text{Number of target cells (Count at time of transduction)} \times \text{[\% GFP positive cells/100]}}{\text{(Volume of lentivirus stock in ml)}} \]

SECTION IV: AAV Generation in Adherent HEK 293 Cell Cultures

The following procedure describes plasmid DNA transfections for AAV generation in adherent HEK 293 cell types in a <u>6-well plate format</u>. The surface areas of other culture vessels are different, and transfections must be scaled accordingly. Appropriately increase or decrease the amounts of serum-free medium, *Trans*IT-VirusGEN® Reagent, total plasmid DNA and complete culture medium based on the size of the cell culture vessel (refer to **Table 3** below).

Table 3. Recommended *Trans*IT-VirusGEN® starting conditions for AAV production

Culture vessel	48-well plate	24-well plate	12-well plate	6-well plate	10-cm dish	T75 flask
Surface area	1.0 cm ²	1.9 cm ²	3.8 cm ²	9.6 cm ²	59 cm ²	75 cm ²
Complete growth medium	263 μl	0.5 ml	1.0 ml	2.0 ml	10 ml	15 ml
PBS or serum-free medium	26 µl	50 μl	100 μ1	200 μl	1.0 ml	1.5 ml
Total Plasmid DNA (1 µg/µl stock)	0.39 μ1	0.75 μl	1.5 μl	3 μl	15 μl	22.5 μl
TransIT-VirusGEN® Reagent	0.78 μ1	1.5 μl	3 μ1	6 μl	30 μl	45 μ1

NOTE: Total Plasmid DNA refers to the combined weight of AAV plasmids (in µg) per transfection.

Materials Required but Not Supplied

- HEK 293 cells (e.g. HEK 293T/17 cells, ATCC Cat. No. CRL-11268)
- Complete culture medium (e.g. DMEM + 10% FBS + 10 mM HEPES pH 7.4)
- Plasmid DNA (e.g. pAAV-hrGFP (Agilent Cat. No. 240074-51), pHelper (Agilent Cat. No. 240071-54), pALD-AAV5 (Aldevron Cat. No. 5058-10))
- Phosphate Buffered Saline (PBS) (e.g. Millipore Sigma Cat. No. D8537) or serum-free medium (e.g. Opti-MEM® I Reduced-Serum Medium) for complex formation
- 10X Cell Lysis Buffer (500 mM Tris pH 8, 10% Tween® 20, 20 mM MgCl₂)
- 5 M Sodium Chloride (5 M NaCl)
- Benzonase® or equivalent (e.g. Sigma Cat. No. E1014 or Syd Labs Cat. No. BP4200)

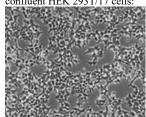
Transient Plasmid Transfection Protocol per Well of a 6-Well Plate

A. Plate cells

- 1. Approximately 18-24 hours before transfection, plate cells in 2.0 ml complete growth medium per well in a 6-well plate. A starting cell density of 4.0 5.0 × 10⁵ cells/ml is recommended. Cultures should be 80-95% confluent at the time of transfection (see representative image at right).
- 2. Incubate cell cultures at 37°C in 5% CO₂ overnight.

B. Prepare TransIT-VirusGEN®: DNA complexes (immediately before transfection)

- 1. Warm TransIT-VirusGEN® to room temperature and vortex gently before using.
- 2. Place 200 μl of PBS or serum-free medium (e.g. Opti-MEM®) in a sterile tube.
- 3. In a separate sterile tube, combine AAV plasmids per the manufacturer recommendations to a final concentration of 1 μ g/ μ l. Mix thoroughly.
- 4. Transfer 3 μl of the DNA mixture prepared in Step B.3 to the tube containing PBS. Mix completely.
- 5. Add 6 μl of *Trans*IT-VirusGEN® Reagent to the diluted DNA mixture. Mix completely by gentle pipetting, inversion, or vortexing. Do NOT agitate Reagent:DNA complexes again


Surface areas are based on Greiner tissue culture plates, Falcon 10-cm dishes and T75 flasks. Volumes are per well (or dish) for a given culture vessel.

If small volumes of *Trans*IT-VirusGEN® need to be pipetted, dilute the reagent in serum-free medium before each use to avoid pipetting errors. *Do not* store diluted *Trans*IT-VirusGEN®.

Passage cultured cells 18-24 hours before transfection to ensure active cell division at the time of transfection.

Representative image of ~80% confluent HEK 293T/17 cells:

Do NOT allow the TransIT-VirusGEN® Reagent to incubate alone in complex formation solution > 5 min, i.e. if the reagent is pre-diluted, add DNA within 5 min for optimal complex formation.

Do NOT agitate Reagent:DNA complexes after the initial mixing.

Page 8 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

after this initial mixing.

NOTE: This is a 2:1 mixture of transfection reagent to total DNA (vol:wt), which can be further optimized for AAV production using *Trans*IT-VirusGEN® Reagent.

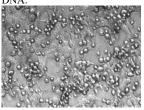
6. Incubate the mixture at room temperature for 15-30 minutes stationary. NOTE: The ideal complex formation time may depend on the vector production platform but is typically between 5-60 minutes.

C. Distribute the complexes to cells in complete growth medium

- Add the TransIT-VirusGEN® Reagent:DNA complexes drop-wise to different areas of the wells.
- 2. Gently rock the culture vessel back-and-forth and from side-to-side to evenly distribute the *Trans*IT-VirusGEN® Reagent:DNA complexes.
- Incubate at 37°C in 5% CO₂ for 48-72 hours prior to AAV harvest.
 NOTE: It is not necessary to replace the complete growth medium with fresh medium post-transfection.

D. Harvest and storage of AAV

- 1. Following the 48-72 hour incubation, add 0.1X volume of 10X Cell Lysis Buffer (i.e. 0.2 ml) and 100 U/ml Benzonase[®] (i.e. 200 U) to each well. Incubate at 37°C for 1.5 hours with shaking.
- 2. Add 0.1X volume of 5 M NaCl (i.e. 0.2 ml) and mix completely. Incubate at 37°C for 30 minutes with shaking.
- 3. Transfer the entire cell lysate mixture to a sterile conical tube or appropriate vessel.
- 4. Centrifuge the mixture at $4{,}100 \times g$ for 10 minutes to remove cell debris. Carefully transfer the AAV containing supernatant to a new sterile tube.
- 5. Store AAV stocks at -80°C.


Harvest of AAV with Freeze/thaw Procedure (Alternative)

- 1. Following the 48-72 hour incubation, scrape the cells from the plate using a cell scraper.
- 2. Transfer the total volume of cells and media (i.e. 2 ml) to a sterile conical tube or appropriate vessel.
- 3. To ensure sufficient lysis of the cells, freeze cells and media completely in a dry ice/ethanol bath. Visually inspect to verify that cells are frozen solid, then thaw in a 37°C water bath. Repeat freeze/thaw procedure a total of three times.
- 4. Add 100 U/ml Benzonase® (i.e. 200 U) to the cell lysate and mix gently but thoroughly. Incubate at room temperature for 30 minutes.
- 5. Centrifuge the cell lysate at $10,000 \times g$ for 10 minutes to remove cell debris. Carefully transfer the AAV containing supernatant to a new sterile tube.
- 6. Store AAV stocks at -80°C.

Morphology changes in HEK 293T/17 cell following transfection with AAV plasmids are expected and indicate virus production.

Representative image of HEK 293T/17 cells 3 days post-transfection with AAV plasmid DNA:

Benzonase® is a non-specific endonuclease used to liberate virus particles from residual nucleic acids in the cell lysates and increase AAV titers.

SECTION V: AAV Generation in Suspension HEK 293 Cell Cultures

The following procedure describes plasmid DNA transfections for AAV generation in 125 ml Erlenmeyer shake flasks using 25 ml of complete growth medium. If using an alternate cell culture vessel, increase or decrease the amounts of serum-free complex medium, *Trans*IT-VirusGEN® Reagent and total DNA based on the **volume of complete growth medium** to be used. To calculate the required reagent quantities based on the recommended starting conditions and total culture volume, refer to the calculation worksheet in **Table 4** (below).

Table 4. Scaling worksheet for *Trans*IT-VirusGEN® for AAV transfections

Starting conditions per milliliter of complete growth medium (AAV Generation)								
	Per	1 ml		Total culture		Reagent quantities		
			volume		1			
PBS or serum-free medium	0.1	ml	×	ml	=	ml		
Total Plasmid DNA (1 μg/μl stock)		μl	×	ml	=	μl		
TransIT-VirusGEN® Reagent	3	μl	×	ml	=	μl		

NOTE: Total Plasmid DNA refers to the combined weight of AAV plasmids (in µg) per transfection.

We recommend premixing the packaging and transfer plasmids. For each unique construct, empirically determine and use the optimal ratio between plasmids for best results. Use plasmid manufacturer recommendations or previously established ratios as a starting point.

Materials Required but Not Supplied

- Suspension HEK 293 Cells (e.g. Viral Production Cells 2.0, Gibco Cat. No. A49784)
- Complete Culture Medium (e.g. Viral Production Medium (Gibco Cat. No. A4817901) or BalanCD HEK293 (Irvine Scientific Cat. No. 91165))
- Plasmid DNA (e.g. pAAV-hrGFP (Agilent Cat. No. 240074-51), pHelper (Agilent Cat. No. 240071-54), pALD-AAV5 (Aldevron Cat. No. 5058-10))
- Phosphate Buffered Saline (PBS) (e.g. Millipore Sigma Cat. No. D8537) or serum-free medium (e.g. Opti-MEM® I Reduced-Serum Medium) for complex formation
- Erlenmeyer shake flasks (e.g. Corning® Cat. No. 431143 or Thomson Cat. No. 931110)
- 10X Cell Lysis Buffer (500 mM Tris pH 8, 10% Tween[®] 20, 20 mM MgCl₂)
- 5 M Sodium Chloride (5 M NaCl)
- Benzonase[®] or equivalent (e.g. Sigma Cat. No. E1014 or Syd Labs Cat. No. BP4200)

Transient Plasmid Transfection Protocol per 25 ml HEK 293 Culture

A. Maintenance of cells

 Passage suspension HEK 293 cells 18-24 hours prior to transfection to ensure that cells are actively dividing at the time of transfection and to obtain a density of 2 - 4 × 10⁶ cells/ml the next day.

NOTE: Perform cell counts and evaluate viability daily to ensure that cells are doubling every 24 hours and \geq 95% viable by trypan blue exclusion. DO NOT proceed with transfection if cells are not doubling normally or are < 95% viable.

2. Incubate cells overnight at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂, shaking).

B. Prepare *TransIT-VirusGEN®*:DNA complexes (immediately before transfection)

- 1. Immediately prior to transfection, seed cells at a density of $2 3 \times 10^6$ cells/ml into a transfection culture vessel (e.g. 25 ml per 125 ml Erlenmeyer shake flask).
- 2. Warm TransIT-VirusGEN® Reagent to room temperature and vortex gently before using.
- 3. Place 2.5 ml of PBS or serum-free medium (e.g. Opti-MEM®) in a sterile tube.

Passage cultured cells 18-24 hours before transfection to ensure that cells are actively dividing at the time of transfection.

Page 10 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

- 4. In a separate sterile tube, combine AAV plasmids per manufacturer recommendations to a final concentration of 1 μg/μl. Mix thoroughly.
- 5. Transfer 50 μ l of the DNA mixture prepared in Step B.4 to the tube containing PBS. Mix completely.
- 6. Add 75 μl of *Trans*IT-VirusGEN® Reagent to the diluted DNA. Mix completely by gentle pipetting, inversion or vortexing. Do NOT agitate Reagent:DNA complexes again after this initial mixing.
 - NOTE: This is a 1.5:1 mixture of transfection reagent to total DNA (vol:wt), which can be further optimized for AAV production using *Trans*IT-VirusGEN® Reagent.
- Incubate the mixture at room temperature for 15-30 minutes stationary.
 NOTE: The ideal complex formation time may depend on the vector production platform but is typically between 5-60 minutes.

C. Distribute the complexes to cells in complete growth medium

- 1. Add the *Trans*IT-VirusGEN[®]:DNA complexes (prepared in Step B) to culture vessel, swirling gently to distribute.
- 2. Shake flasks on an orbital shaker (125 rpm when using a shaker with a 1.9 cm orbital throw) at appropriate temperature and CO₂ levels (e.g. 37°C, 5-8% CO₂).
- 3. Incubate cultures for 48-72 hours prior to AAV virus harvest.

D. Harvest and storage of AAV

- 1. Following the 48-72 hour incubation, transfer the total volume of cell suspension (i.e. 27.5 ml) to a sterile conical tube or appropriate vessel.
 - NOTE: See 'Freeze/thaw Procedure' below for an alternative method to harvest AAV.
- 2. Add 0.1X volume of 10X Cell Lysis Buffer (i.e. 2.75 ml) and 100 U/ml Benzonase[®] (i.e. 2,750 U). Mix completely and incubate at 37°C for 1.5 hr with shaking.
- 3. Add 0.1X volume of 5 M NaCl (i.e. 2.75 ml) and mix completely. Incubate at 37°C for 30 minutes with shaking.
- 4. Centrifuge the mixture at 4,100 × g for 10 minutes to remove cell debris. Carefully transfer the AAV containing supernatant to a new sterile tube.
- 5. Store AAV stocks at -80°C.

Harvest of AAV with Freeze/thaw Procedure (Alternative)

- 1. Prepare a dry ice/ethanol bath.
- 2. Centrifuge cell suspension at $1,750 \times g$ for 10 minutes.
- 3. Remove the supernatant and process as needed.
- 4. Add 5.5 ml of Freeze/Thaw Lysis Buffer (50 mM Tris pH 8.5, 150 mM NaCl, 2 mM MgCl₂) to the cell pellet. Mix thoroughly until cell clumps are no longer visible. NOTE: The required volume of Freeze/Thaw Lysis Buffer is calculated by multiplying the transfected cell culture volume by 0.2 ml.
- 5. To ensure sufficient lysis of the cells, freeze cells completely in the dry ice/ethanol bath. Visually inspect to verify that cells are frozen solid, then thaw in a 37°C water bath. Repeat freeze/thaw procedure a total of three times.
- 6. Add 50 U/ml Benzonase[®] (i.e. 275 U) to the cell lysate and mix gently but thoroughly. Incubate at room temperature for 30 minutes.
- 7. Centrifuge the cell lysate at 10,000 × g for 10 minutes to remove cell debris. Carefully transfer the AAV containing supernatant to a new sterile tube.
- 8. Store AAV stocks at -80°C.

Do NOT allow the *Trans*IT-VirusGEN® Reagent to incubate alone in complex formation solution > 5 min, i.e. if the reagent is pre-diluted, add DNA within 5 min for optimal complex formation.

Do NOT agitate Reagent:DNA complexes after the initial mixing.

There is no need to change culture medium after transfection, unless required by your cell type or culture conditions.

Benzonase® is a non-specific endonuclease used to liberate virus particles from residual nucleic acids in the cell lysates and increase AAV titers.

SECTION VI: AAV Transduction/Titering Method Using a GFP Reporter Virus

The following procedure describes transduction of HT-1080 cells grown in a <u>24-well format</u> with a GFP reporter AAV2 and is meant to determine functional AAV2 titers. The number of wells needed for this assay will depend on the number of AAV stocks titered and the number of dilutions required for testing per stock (see step B.2). Testing several dilutions is recommended to accurately determine the functional AAV2 titer. This protocol can be adapted to transduce cells that are permissive to different AAV serotypes.

Materials Required, but Not Supplied

- HT-1080 cells (ATCC Cat. No. CCL-121)
- Dulbecco's Modified Eagle Medium (DMEM) (Corning Cat. No. 10-013-CV)
- Complete HT-1080 cell culture medium (e.g. DMEM + 10% FBS)
- DMEM + 2% FBS for AAV dilutions
- AAV stock(s) expressing GFP reporter
- 24-well tissue culture plate(s)
- 1X PBS and trypsin
- Flow cytometer equipped with a GFP compatible laser

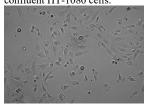
A. Plate cells

- 1. Approximately 4-6 hours before transduction, plate HT-1080 cells in 0.5 ml complete growth medium per well in a 24-well plate. A starting cell density of 1×10^5 cells/ml is recommended. Cells should be adhered to the plate and 40-50% confluent at the time of transduction.
- 2. Record the cell count, which is critical to determine an accurate functional titer.

B. Transduce with GFP-encoding recombinant AAV

- 1. Thaw AAV stock(s) in 37°C water bath. Remove promptly after virus has thawed to prevent virus inactivation. Gently mix virus stock.
- Make 1:250 and 1:1000 dilutions of the AAV stock(s) in DMEM + 2% FBS.
 NOTE: Each test well will receive 50 µl of the appropriate dilution. Lower or higher dilutions may be required depending on the serotype and AAV production conditions.
- 3. Add 50 µl of the appropriate AAV dilution to wells containing cells.
- 4. Incubate the assay wells at 37°C in 5% CO₂ for 48 hours post-transduction.

 NOTE: To obtain an accurate titer, it is desirable to have less than 20% GFP positive cells at 48 hours post-transduction. This minimizes counting cells with multiple integration events, which would result in an underestimation of titer.


C. Cell harvest and analysis

- 1. Gently wash cells with 200 μ l 1X PBS. Following the removal of PBS, immediately add 100 μ l of trypsin to each well.
- 2. Incubate the plate at 37°C and closely monitor cell rounding and detachment.
- 3. After cells have detached, add 400 μ l of complete growth media (e.g. DMEM + 10% FBS) to each well to inactivate the trypsin and resuspend the cells. NOTE: The cells should be at $\sim 1 \times 10^6$ cells/ml. The cells can be further diluted in growth media if desired.
- 4. Transfer 250 μl of cell suspension from each well to separate wells in a non-treated 96-well plate (or similar culture vessel) that is compatible with your flow cytometer. NOTE: The optimal volume added for dilution may vary depending on the flow cytometer.

Cells can also be plated 18-24 hours before transduction, but at a lower density $(7.5 \times 10^4 \text{ cells/ml})$ to ensure 40-50% confluency at the time of transduction. If plated the day before, the cells should be trypsinized and counted again at the time of transduction because cells will likely have divided and increased in number.

Representative image of ~50% confluent HT-1080 cells:

Page 12 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

- 5. Analyze for GFP expression by flow cytometry.
- 6. Calculate the functional titer of the AAV stock using the following equation:

Titer (HT1080 Transducing units/ml) =	Γ	Number of target cells (Count at time of transduction) × [% GFP positive cells/100]	-
Their (1111000 Transacing anias ini)	L	(Volume of AAV Stock in ml)	_

NOTE: To determine the functional titer produced per milliliter of total culture, multiply the AAV stock titers determined above by the dilution factor at harvest (e.g. for AAV produced in suspension HEK 293 cultures and harvested as described in Section IV.D and V.D, multiply AAV stock titers determined above by 1.2).

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

TROUBLESHOOTING GUIDE

Problem	Solution						
Incorrect vector sequence	If you do not observe expression of your target insert, verify the sequence of your plasmid DNA.						
Suboptimal <i>Trans</i> IT [®] Reagent:DNA ratio	Determine the best <i>Trans</i> IT-VirusGEN® Reagent:DNA ratio for each cell type. Titrate the <i>Trans</i> IT-VirusGEN® Reagent volume from 2-4 µl (lentivirus) or 1-3 µl (AAV) per 1 µg DNA. Refer to "Before You Start" on Page 2 for recommended starting conditions.						
	Determine the DNA concentration accurately. Use plasmid DNA with an A _{260/280} of 1.8-2.0.						
Suboptimal DNA concentration	The optimal DNA concentration generally ranges between 0.5-2 μg per 1 ml of culture. For lentivirus, start with 1 μg DNA per 1 ml of culture. For AAV, start with 2 μg DNA per 1 ml of culture. Consider testing different amounts of DNA while scaling the amount of <i>Trans</i> IT-VirusGEN® accordingly.						
	Use highly purified, sterile, endotoxin- and contaminant-free DNA for transfection.						
Low-quality plasmid DNA	We recommend using Mirus MiraCLEAN® Endotoxin Removal Kit (MIR 5900) for removal of endotoxin from your DNA preparation. Alternatively, use cesium chloride gradient or anion exchange purified DNA which contains levels of endotoxin that do not harm most cells.						
Cells not actively dividing at the time of transfection	Divide the culture at least 18-24 hours before transfection to ensure that the cells are actively dividing and reach optimal cell density at time of transfection. DO NOT proceed with transfection if cells are not doubling normally or are $< 95\%$ viable.						
Time of viral vector harvest not optimal	Determine the optimal time post-transfection to harvest viral vectors. Typically, the best time is 48 hours post-transfection to harvest lentivirus and 48-72 hours post-transfection to harvest AAV. However, the best time to harvest will depend on the vector construct and production platform.						
	Warm TransIT-VirusGEN® Reagent to room temperature and vortex gently before each use.						
<i>Trans</i> IT-VirusGEN [®] was not mixed properly	If <i>Trans</i> IT-VirusGEN® Reagent is pre-diluted in complex formation solution, DNA should be added within 5 min. Incubating the <i>Trans</i> IT-VirusGEN® Reagent in complex formation solution alone for an extended time results in reduced production of functional virus.						
Disruption of transfection complex formation	After initial mixing of DNA and <i>Trans</i> IT-VirusGEN® Reagent, do not agitate Reagent:DNA complexes again, e.g. do not vortex or invert before adding to cultures.						
Excessive complex formation time	We recommend a complex formation time of 15-30 minutes, though viral titer and quality may be further optimized by evaluating complex formation times between 5-60 minutes for each unique vector construct.						
	During complex formation, scale all reagents according to the scaling tables provided in each section of the protocol, including: serum-free media, <i>Trans</i> IT-VirusGEN® and plasmid DNA.						
Precipitate formation or turbid appearance during transfection complex formation	Precipitation may be observed when excess DNA is used during complex formation. This may negatively impact transfection efficiency. To avoid precipitation when using high concentrations of DNA, increase the volume of serum-free medium used during complex formation.						
	Large-volume transfection complexes may appear turbid – typically, this phenomenon does <i>not</i> negatively impact transfection as long as complexes are well mixed.						
Proper experimental controls were not included	To assess delivery efficiency of plasmid DNA, use Mirus <i>Label</i> IT® Tracker TM Intracellular Nucleic Acid Localization Kit to label the target plasmid or use Mirus prelabeled <i>Label</i> IT® Plasmid Delivery Controls (please refer to Related Products on Page 16).						
Controls were not included	To verify efficient transfection, use <i>Trans</i> IT-VirusGEN® Reagent to deliver a positive control such as a luciferase, beta-galactosidase or green fluorescent protein (GFP) encoding plasmid.						

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

TROUBLESHOOTING GUIDE continued

HIGH CELLULAR TOXICITY						
Problem	Solution					
Cell density not optimal at time of transfection	High toxicity and cell death may be observed if cells are not dense at the time of transfection. For high virus titers using $Trans$ IT-VirusGEN® Reagent, ensure that cell cultures are between 80 and 95% confluent (for adherent cell transfections) or approximately $2 - 3 \times 10^6$ cells/ml (for suspension cell transfections) at the time of transfection.					
	When generating lentivirus, overexpression of the vesicular stomatitis virus (VSV) G protein causes changes in cell morphology and can even result in cell-cell fusion. This is normal and does not adversely affect virus titers.					
Cell morphology has changed	Mycoplasma contamination can alter cell morphology and affect transfection efficiency. Check your cells for mycoplasma contamination. Use a fresh frozen stock of cells or use appropriate antibiotics to eliminate mycoplasma.					
	A high or low cell passage number can make cells more sensitive and refractory to transfection. Maintain adherent or suspension HEK 293 cells below passage 30 for optimal recombinant virus production.					
Transfection complexes not evenly distributed after complex addition to cells	Add transfection complexes drop-wise to the cells. For adherent cell cultures, gently rock the dish back-and-forth and from side-to-side (instead of rotating) to distribute the complexes evenly. For suspension cultures, add transfection complexes while swirling the flask. If this is not possible, gently mix the culture vessel to ensure even distribution of the transfection complexes. Avoid vigorous agitation that could disturb formed transfection complexes, e.g. vortexing after initial mixing of the DNA and transfection reagent.					
Transfection complexes added to adherent cells cultured in serum-free medium	<i>Trans</i> IT-VirusGEN® Transfection Reagent efficiently transfects cells cultured in serum-free medium; however, toxicity may be higher if serum is not present when transfecting adherent cells typically cultured in serum-containing complete media. If toxicity is a problem, consider adding serum to the culture medium.					

Page 15 of 16

Protocol for MIR 6700, 6703, 6704, 6705, 6706, 6710, 6720, 6740

RELATED PRODUCTS

- TransIT-VirusGEN® GMP Transfection Reagent
- VirusGEN® LV Transfection Kit
- VirusGEN® AAV Transfection Kit
- VirusGEN® GMP LV Transfection Kit
- VirusGEN® GMP AAV Transfection Kit
- TransduceITTM Reagent
- Label IT® Plasmid Delivery Controls
- Label IT® TrackerTM Intracellular Nucleic Acid Localization Kits
- MiraCLEAN® Endotoxin Removal Kits
- TransIT®-Lenti Transfection Reagent
- Ingenio® Electroporation Solution and Kits

For details on the above-mentioned products, visit www.mirusbio.com

Reagent Agent[®] is an online tool designed to help determine the best solution for nucleic acid delivery based on in-house data, customer feedback and citations.

Learn more at: www.mirusbio.com/ra

Contact Mirus Bio for additional information.

Mirus Bio LLC 5602 Research Park Blvd, Ste 210 Madison, WI 53719

Toll-free: 888.530.0801 Direct: 608.441.2852 Fax: 608.441.2849

©1996-2025 All rights reserved. Mirus Bio LLC. All trademarks are the property of their respective owners. For terms and conditions, visit www.mirusbio.com

Rev2 061423 Page 16 of 16